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Abstract

Conventional datasets for computer vision tasks
include images with solely RGB features. Nev-
ertheless, in particular domains, it is possible
to gather per pixel information from other sen-
sors. Especially, the DroneDeploy Segmentation
Dataset includes images of large aerial scenes
with additional information about the elevation
of the spatial region. We try to determine whether
utilizing the elevation features improves the per-
formance of the semantic segmentation in that
dataset by exploring different approaches of in-
corporating the elevation data into a DeepLabV3
model. Additionally, we question the usefulness
of the depth information itself. Looking at the
quality of the dataset we conclude that issues with
annotation can overshadow any of the benefits of
the depth.

1. Introduction

The performance of novel machine learning approaches
on computer vision tasks is typically evaluated on a very
narrow set of image collections. Examples of such datasets
include CIFAR-10, CIFAR-100, (Krizhevsky et al., 2009)
or ImageNet (Deng et al., 2009) for object recognition as
well as Cityscapes (Cordts et al., 2016), COCO (Lin et al.,
2014), or PASCAL VOC (Everingham et al., 2012) for
semantic segmentation.

The images in all of the previously mentioned datasets
are represented with RGB features only. Nevertheless, in
some particular domains, the images can also contain other
characteristics than the colour intensities. For example,
KITTT (Geiger et al., 2013) is a dataset that, apart from
the RGB features, contains a depth map, which contains
information about the distance between the captured ob-
ject and the camera. Similarly, the images of large aerial
scenes captured by satellites as in SpaceNet 6 (Shermeyer
et al., 2020) or by drones as in DroneDeploy Segmentation
Dataset (Nicholas Pilkington & Holmes, 2019) can also
contain multispectral features.

When multimodal characteristics are available, restricting
the inputs of machine learning tasks solely to RGB fea-
tures seems unreasonable. The data from other sensors
can convey valuable information that can lead to better dis-
crimination of particular classes in tasks such as semantic
segmentation, object detection or image classification.

Figure 1. Example image representing the data from the DroneDe-
ploy dataset, taken from the dataset’s repository

Notwithstanding, simply adding non-RGB features may not
necessarily lead to performance improvements either, as the
noisiness of such information sources might overshadow
their discriminative power.

What has particularly inspired us to tackle the problem of
depth in Computer Vision is the following quote by Elon
Musk, the CEO of Tesla, Inc.:

LiDAR is a fool’s errand. .. and anyone relying
on LiDAR is doomed - Elon Musk

Uber, Waymo, Toyota and almost every other company
working on an autonomous car rely on the depth data cap-
tured by the expensive LiDAR sensor in their Computer
Vision systems. LiDAR is a method of targeting an ob-
ject with a laser and measuring the time for the reflected
light to return to the receiver, calculating the depth in the
process. This is currently the most advanced and reliable
way of capturing depth. LiDAR isn’t used, however, by the
most popular self-driving car manufacturer!, Tesla. Elon
Musk claims that, if humans can do it without explicit depth
sensors, cars should be able to do it too.

Is it worth investing in elevation measuring sensors? Such
sensors can be expensive and if they do not lead to substan-
tial improvements in performance, then what is the point
of investing in them? Maybe it is better to improve perfor-
mance by gathering more data rather than buying another
sensor? If a single good quality LiDAR device on a car can
cost up to $10,000” and up to $100,000° if we want to fly it
on a drone, perhaps it is better to invest in a higher quality
dataset?

Thttps://www.forbes.com/sites/greatspeculations/2020/07/03/
tesla-king-of-self-driving-cars/

Zhttps://towardsdatascience.com/why-tesla-wont-use-lidar-
57c325ae2ed5

3https://wingtra.com/drone-photogrammetry-vs-lidar/
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To address the question of the usefulness of depth we have
decided to study the difficulty of incorporation of the depth
data into a semantic segmentation model. We have chosen
the DroneDeploy dataset (Figure 1), a relatively unknown
dataset containing large, high-quality aerial scenes with
an elevation map attached to each image. We have found
only 2 related papers (Heffels & Vanschoren, 2020; Parmar
et al., 2020), that use this dataset, none of which use the
depth data. Our goal was to improve the baseline result of
DeepLabV3 (Chen et al., 2017b), a popular DeepLabV3
semantic segmentation model and determine whether more
datasets should start capturing the depth data or rather focus
on better quality of RGB images by verifying the usefulness
of the depth in the dataset.

We start with adding the depth as a fourth channel in the
input, following with more sophisticated methods of incor-
porating depth using the ESANet (Seichter et al., 2020)
architecture with a separate ResNet-based depth encoder
and Fusion blocks and lastly, a Depth-aware convolution
(Wang & Neumann, 2018) operation that can be used in
place of standard convolution layers.

We evaluate our proposed models and show that the incor-
poration of depth does not result in obvious improvements
in the accuracy of our baseline RGB model. Moreover, we
conduct experiments on the dataset itself, showing that the
addition of depth cannot overcome underlying issues in the
data. More specifications are provided in Section 3 and 4.

2. Data set and task
2.1. DroneDeploy Dataset

DroneDeploy dataset consists of large, aerial scenes cap-
tured from drones. Each scene has a ground resolution of
10 cm per pixel. For each scene, there is a corresponding
RGB image, elevation map and an annotated label image.

The dataset contains 55 very large RGB images: 35 for
training, 8 for validation and 12 for testing purposes, to-
talling 9.1 GB with the corresponding elevation and label
data. Each image is split into non-overlapping 300x300
chunks, yielding 6888 chunks for training and validation in
total. Similarly, elevation and label maps have been split in
the same manner.

The images are stored as RGB TIF files. The elevation maps
are single-channel TIFs, where each pixel has a correspond-
ing pixel in the RGB image and represents an elevation in
meters. Finally, the labels are PNG files with seven colours
representing the seven classes, namely Building, Car, Vege-
tation, Clutter, Ground, Water and Ignore, where the Ignore
class refers to a mask area with a missing label or outside of
the image boundary. When the original image is split into
300x300 chunks, any chunk that contains a pixel with the
Ignore label is rejected. Thus, in the final dataset divided
into chunks, all of the pixels fall into one of six and not
seven of the previously mentioned classes.

Table 1 shows the unbalanced distribution of pixels among

| Class | Training Set | Validation Set |
Building 3.84 6.85
Clutter 2.31 3.74
Vegetation 26.27 16.66
Water 2.95 2.31
Ground 64.29 70.08
Car 0.33 0.36

Table 1. Distribution of pixels among classes in the training and
validation sets of the DroneDeploy dataset. The table displays the
percentage of pixels with a given label in the particular set.

the classes in the dataset. Furthermore, the class distribu-
tions vary significantly between the training and validation
set. Figure 7 shows the distribution of per-pixel elevation
in each image in the datasets. We also notice a slight imbal-
ance between the datasets.

2.2. Preprocessing

Although no pixel with the Ignore label was present in the
dataset, some of the pixels were still missing the elevation
data. The missing elevation was encoded with a -32,767
value when the remainder of elevation was in the [-40, 505]
range. Fortunately, only less than 0.0002% of pixels in the
dataset were missing elevation. We have decided to impute
such missing values with k-NN as suggested in (Butcher
& Smith, 2020). We have used k = 8, as it is reasonable
that a typical pixel shares edges with four adjacent pixels
and four vertices with another four diagonal pixels. Eu-
clidean distance measure based on the difference between
pixel locations in the 2D pixel grid was utilized to find
the nearest neighbours. Nearest neighbours with missing
elevation were not taken into account. We believe that the
use of k-NN imputation was justified in our scenario as it
preserves the local elevation distributions which should aid
the classifier in the segmentation task.

After the imputations, all of the RGB and elevation
values were normalized to the [0, 1] range. Then we
have further standardized the resultant values with the
per channel mean and standard deviation computed on
the training set (the elevation was treated as a fourth
channel during the preprocessing). We have applied
a mean of [0.5220,0.5120,0.4516,0.0937] and std of
[0.1983,0.1882,0.1934,0.0588].

2.3. Image segmentation

Image segmentation is a pixel-level classification task
where each pixel in the image has to be classified into one of
the available classes. This can be described as partitioning
the image into multiple segments, where each segment con-
tains a collection of neighbouring pixels belonging to the
same class. Segmentation is typically split into two types:
semantic segmentation and instance segmentation. The def-
inition interpreted from (Arnab et al., 2018) describes them
as follows:
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Semantic segmentation is the process of assigning a la-
bel to every pixel in the image, where multiple objects of
the same class are treated as the same entity

Instance segmentation is the process of assigning a label
to every pixel in the image, but here multiple objects of
the same class are treated as distinct individual objects (or
instances).

Due to the additional difficulty in separating the segmented
mask into distinct objects, instance segmentation is con-
sidered to be a much harder task than semantic segmenta-
tion. We have concluded that the trade-off of difficulty for
the ability to find individual instances of the object is not
favourable for aerial imagery and is typically not as useful.
Hence, we have decided to focus on semantic segmentation,
seeing more resources and related work for this task.

2.4. Intersection over Union

The typical accuracy benchmark that is used in the research
community for image segmentation is the Intersection over
Union averaged across all classes or mIoU (Equation 1),
where 0 < mloU < 1.

C ANB
i=1 A;UB;

C

mloU = (1)
The intersection A; N B; for each class i represents the pixels
found both in the prediction mask and ground truth mask.
The union A; U B; has all of the pixels found in either of the
masks. The ratio of the above shows how well the predicted
mask overlaps the ground truth - a too small prediction
mask will cause the intersection to be small, a too-large
prediction mask will make the union large, in both cases
making the mIoU smaller.

The calculated score over each class is then averaged out
over the number of classes C. Although the score can
be balanced on the number of examples for each class, an
unbalanced version is typically used (Heffels & Vanschoren,
2020), as seen in Equation 1.

2.5. "Depth'" Neural Networks

In standard semantic segmentation, the model extracts the
features from an image using a backbone that is common
to other tasks like image classification or object detection.
However, the main difference between the classification
and segmentation models is in their classifiers. Since for
segmentation we expect an output of the same resolution as
the image, with the classes localised and their boundaries
annotated, the features cannot undergo such an intense com-
pression. What’s more, the level of detail in segmentation
has to be passed and maintained through all of the layers to
ensure good accuracy.

Another issue can be the distinction of separate classes dur-
ing segmentation, which might be difficult to distinguish
due to similar colours (grass vs tree) or poor lighting condi-
tions (shaded area).
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Figure 2. Example 3x3 atrous convolutions with 3 rates. Image
taken from (Chen et al., 2017b).

Depth information that has recently become more widely
used thanks to the addition of stereo depth estimation and
the better accessibility to LiDAR sensors, in theory, could
help in solving both of these issues. This single-channel
data, as an addition to the RGB data, could theoretically
help extract additional geometric cues that are immensely
important for segmentation. In particular, (Wang & Neu-
mann, 2018) claims that the extracted geometry from the
depth image should help distinguishing correlations not
captured by the RGB image, like more concrete contours
of the distinctive classes.

In both of the aforementioned issues, precise depth informa-
tion could help disambiguate similar-looking classes when
the RGB information can be lost due to a similar signal
frequency. RGB-D models, when incorporating the depth
information correctly, should have a better ability to be
resistant to unfavourable perturbations of the input.

3. Methodology

In this section, we describe the baseline segmentation
model and review how it extracts dense features from the
RGB image for semantic segmentation. We then propose
two models that incorporate the additional depth informa-
tion into their feature output and discuss how these differ
from the traditional RGB approach.

3.1. Baseline model

For this project, we have decided to use DeepLabV3 (Chen
et al., 2017b) as the base semantic segmentation model.
The family of DeepLab models for semantic segmentation
has been one of the most popular architectures thanks to its
fairly straightforward architecture, based on a pre-trained
backbone model like VGG (Simonyan & Zisserman, 2015)
or ResNet (He et al., 2015) and atrous convolution. Base
DeepLabV3 model uses ResNet50 as the encoder to extract
visual features that later get decoded with an Atrous Spa-
tial Pyramid Pooling (ASPP) (Chen et al., 2017a) module.
Original ASPP module contains four parallel convolutions,
with one 1x1 convolution and three 3x3 atrous convolutions
with different atrous rates that enable effectively capturing
multi-scale information from the encoder. To incorporate
additional global-level features that are crucial in an accu-
rate semantic segmentation, DeepLabV3 introduces image-
level features using global average pooling on the last layer
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of the backbone. The output of the pooling is then passed
through a 1x1 convolution to reduce the number of chan-
nels to 256 and bilinearly upsampled to the desired output
resolution. These 5 outputs in the ASPP module are then
concatenated, passed through a final classifier module that
is then upscaled to final image resolution.

DeepLab introduces the notion of output stride, which sig-
nifies how much smaller is the output resolution of the
model. A typical ResNet model reduces the output resolu-
tion by 32x before it performs final classification. By using
atrous convolution in the last layer of the ResNet encoder,
DeepLabV3 can preserve the resolution of the second last
backbone feature map which is 16x smaller than the res-
olution of the image, hence the output_stride=16. Atrous
convolution or dilated convolution (Figure 2) allows the
model to effectively enlarge the field of view of filters to
incorporate multi-scale context (Chen et al., 2017b), with-
out reducing the resolution as done by pooling layers or
striding in convolution.

Learning rate policy: We use a learning rate of 0.01
(Chen et al., 2017b; 2018; Heffels & Vanschoren, 2020).
However, as implemented by (Chen et al., 2017b), we de-
crease the learning rate to 0.001 for the backbone when
using pre-trained weights from ResNet. The lower learning
rate for the encoder part ensures the model relies on the
visual features extracted from the image and prevents its
overfitting, thus promoting healthy learning of the classifier.

We use a standard multiplicative "poly"” learning rate sched-
uler for segmentation tasks as in (Chen et al., 2017b; Wang
& Neumann, 2018). In this scheme, the learning rate is
updated every number of iterations via equation 2, where
Ninir Stands for the learning rate at the beginning of training.
To be more specific we follow the approach from (Wang
& Neumann, 2018) more closely by updating the learning
rate every ten iterations.

. 0.9
iter
Niter = Minit * (1 - —) @)
max_iter
. #epochs * #training_chunks
max_iter = 3)

batch_size

Furthermore, in every experiment, we use a batch size of 8.

Data augmentation: Data augmentation is an industry
standard that allows the models to train on more coherent
yet diverse data.

For datasets like ImageNet or PASCAL VOC, it is common
to add a horizontal flip of the image but there is no added
value if that variant doesn’t exist in real life, e.g. vertically
flipped portrait. However, (Heffels & Vanschoren, 2020)
claims that aerial imagery differs in this regard from ground-
level images since the top-down perspective can be flipped
along both axes without distortion, hence we have decided
to use both x-axis and y-axis random flip.

Additionally, we have added random scaling of the input
images by a factor in the range [0.5, 2,25]. For the crop
size, we have decided to use the maximum size of each chip
- 300x300, following the findings of (Chen et al., 2017b)
which showed that the large receptive field of the atrous
convolution required a non-padded image, hence a smaller
crop size would result in atrous convolution layers being
applied to zero-padded regions.

3.2. RGB-D input

The most trivial way to incorporate the depth or elevation
into a model is to simply treat the depth as a 4" input chan-
nel of the image. This alteration results in a mild change
of network structure as solely the input layer has to accom-
modate more parameters to handle the new channel. Intu-
itively, the modest adjustment should lead to improvements
in performance as the model will have more information on
which it will be able to base its discriminative decisions.

However, what is not trivial is how to incorporate the 4th
input channel into a pre-trained model on the RGB-only
dataset. Simply initializing the parameters that handle the
elevation data as if the model was trained from scratch is not
a good solution. In such a scenario, the model simply learns
to neglect the depth input as initially, the randomly initial-
ized weights make such input too noisy when compared
to the already finetuned colour data. A better approach
to incorporating the depth data into a model pre-trained
on RGB-only dataset was defined in (Seichter et al., 2020)
where the weights handling depth in the input are initialized
to the sum of the standard RGB handling parameters along
the input channel dimension. Here we use this method
when incorporating the elevation as 4" channel into the
pre-trained model.

3.3. Efficient Scene Analysis Network (ESANet)

As the treatment of depth as simply the 4" input channel
seems quite naive, we have decided to look for more sophis-
ticated methods of incorporating depth into our baseline
model via architectural augmentation. One such approach
was proposed in (Seichter et al., 2020). The ESANet ar-
chitecture utilizes two encoders, one for RGB and one
for depth. Each encoder is a ResNet and the information
from the depth encoder is fused into the RGB encoder via
RGB-D Fusion blocks that are applied at every resolution
stage. The overall architectural structure of an ESANet is
demonstrated in Figure 3.

The core distinctive feature of an ESANet encoder is its
RGB-D fusion block. The RGB-D fusion block demon-
strated in Figure 4 applies a separate Squeeze and Excita-
tion (SE) (Hu et al., 2018) operation to depth and colour
data and then fuses the two outputs via summation.

Precisely, SE has a form of global average pooling followed
by 1x1 convolution that reduces the number of channels by
a factor of 16. Then ReLU activation is applied, the initial
number of channels is restored via another 1x1 convolution
followed by sigmoid. Finally, the initial input is rescaled
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Figure 3. The encoder architecture in ESANet. 7x7 relates to the kernel size. S2 indicates a stride of 2. 64 is the number of output
channels in the first convolution. Note that in our implementation of ESANets the last ResNet layer applies atrous convolution to preserve
the image resolution. Hence, our final feature maps are 16 and not 32 times smaller than the resolution of the original image, unlike the
original ESANet in the Figure above. Image taken from (Seichter et al., 2020)
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Figure 4. The structure of the RGB-D Fusion block in ESANet. C
is the number of input channels into the block, so C/16 or C in a
cyan block refers to the number of output channel after respective
1x1 convolution. Image taken from (Seichter et al., 2020)

by elementwise multiplication of the results of the previous
operations to attain SE’s output.

The initial global average pooling termed "squeezing" ag-
gregates global spatial information into a channel descrip-
tor. Then the following two 1x1 convolutions employ the
"excitation" operation that extracts the inter-channel depen-
dencies in the data. Consequently, SE is an attention-based
mechanism that exploits the global inter-channel dependen-
cies in a signal of a particular type. This lets the model learn
how to reinforce certain features key for discrimination and
suppress others in the face of a given input.

As we have reviewed different sources it became apparent
that fusion of depth into the RGB signal can occur at differ-
ent stages in the architecture. Our initial naive model with
4™ depth input channel fused depth at the earliest possible
level. (Seichter et al., 2020) fuses the depth at multiple
stages in the backbone while (Gupta et al., 2014) is a pro-
ponent of late fusion. As there are so many possibilities,
we have decided to construct four models that fuse depth
into RGB at different stages to empirically determine the
most successful one. All but the last ASPP fusion model in-
corporate the RGB-D fusion unit to fuse depth with colour.

All of the models can use depth encoder pre-trained on
RGB-only data. The pretraining on the first singular depth
input channel is incorporated as in section 3.2.

Early Fusion applies the first 7x7 convolution on the
depth input map and fuses its output with RGB. No more
separate depth processing is undertaken.

ESANet approach fuses the depth signal with colour
exactly as in (Seichter et al., 2020) and Figure 3.

Late fusion follows the approach from () where the full
separate depth encoder is utilized but the signals are fused
only after the final ResNet layer.

ASPP fusion is our custom fusion model that does not
use the RGB-D fusion units. This model has a full depth
ResNet encoder, its output is passed to the Deeplab’s classi-
fier which processes it in parallel exactly as an RGB signal.
Encoded depth goes through the 1x1 convolution, three
3x3 dilated convolutions and one global average pooling.
Therefore, before the final ASPP projection, the 10 colour
and depth feature maps are fused via concatenation, com-
pared to the 5 in the standard ASPP module as described in
Section 3.1.

3.4. Depth-aware convolutions

A compelling way of incorporating depth information into
the model called depth-aware CNN was presented in (Wang
& Neumann, 2018). What is the most appealing about
the depth-aware CNN is that unlike the preceding methods
it neither alters the network’s architecture nor increases
its number of parameters. Depth-aware CNN succinctly
incorporates the depth into the model by simply augmenting
the classical convolution operation to take advantage of
the availability of non-RGB information. In a classical
convolution, a kernel is applied to a local grid of pixels by
multiplying each pixel-value by the corresponding weight
in the kernel. However, in the depth-aware convolution,
the kernel weight multiplies a value of its corresponding



MLP Coursework 4 — Final Report (G114)

pixel that was first scaled by the similarity of that pixel’s
elevation to the elevation of the central pixel in the local
grid. (This assumes that the kernel is a square and that its
side sizes are odd).

The depth similarity of two pixels is defined by equation 4,
whereas the overall operation of depth-aware convolution
can be summarized with equation 5.

FD(piapj) — e—IY*|D(P/)—D(Pj)| 4)

Y(Po) = ) w(pa) * Fo(po, po + pa) # X(po + pa)  (5)
Pn€R

D(p;) is the depth of pixel p;. a is a hyper-parameter that
can be adjusted to increase or decrease the effect of scal-
ing via depth. Smaller « increases the influence of depth,
while larger one does the opposite. When a = 0 the depth
information is not taken into consideration. (Wang & Neu-
mann, 2018) suggests that @ = 8.3 is the optimal value
of this hyper-parameter. Thus, in our experiments with
depth-aware CNN we have used this value.

In equation 5 R defines the set of pixels in local grid around
the central pixel py. w(p,) is the kernel weight correspond-
ing to pixel p,. x(po + p,) is the value of pixel p,,.

The depth-similarity scaling in the depth-aware convolution
ensures that pixels with similar elevations to the central
pixel in the local grid have significantly higher activations.
In effect, the depth-awareness smoothly transforms the re-
ceptive field of the output pixel, so that it focuses on the
regions of similar elevations. The usefulness of the depth-
aware convolutions relies on the degree to which the as-
sumption that the pixels in proximity with similar elevations
should have the same label is true.

Implementation details: Unfortunately, the sole Py-
Torch implementation of depth-aware convolution that we
have found was outdated. Thus, we had to implement such a
module from scratch.* As we are not pro-efficient with writ-
ing C++ extensions for PyTorch we have limited ourselves
to an implementation that uses basic PyTorch components
only. Especially, we have utilized the PyTorch unfold
function which turned the images into im2col representa-
tion that allowed us to optimize the code via vectorization.
The scaling was implemented via element-wise tensor mul-
tiplication of pixel values and their corresponding depth
similarities within a given window. On the other hand, the
kernel was applied to the scaled pixel-values via tensor
multiplication.

As our implementation is not optimized for CUDA, a
ResNet50 that uses depth-aware convolutions is approx-
imately 5 times slower than one that uses standard PyTorch
convolutions.

4The custom implementation can be found at: https://github.
com/Marti242/DConv

Figure 5. Differences in segmentation among baseline models op-
timized with weighted and unweighted cross-entropy loss.

Architecture: The paper that introduced the depth-aware
CNNs utilized a VGG architecture. Precisely, (Wang &
Neumann, 2018) replaced only the first standard convolu-
tion within each VGG block with a depth-aware one. As
we are using a different architecture we had to make certain
adjustments. Especially as ResNet50 has Bottleneck blocks
with 2 1x1 convolutions and a 3x3 convolution in between
them. For a 1x1 convolution, there is no between pixel
depth-similarity to measure. Thus, it only makes sense to
replace the middle 3x3 convolution with a depth-aware one.
Furthermore, as the 4 layers are distinguished within the
ResNet architecture, we have decided to check whether
it is better to insert the depth-aware convolution into each
Bottleneck in the backbone or to mimic (Wang & Neumann,
2018) and apply depth-aware convolution only in the first
Bottleneck block of each ResNet layer. We further explore
this topic in section 4.

The feature maps become smaller as they get closer to
the output layer of the ResNet. To apply the depth-aware
convolution the depth map has to be of the same size as
the feature maps. Thus, we were applying average pooling
with a 3x3 kernel, a stride of 2 and padding of 1 to the depth
map whenever the resolution of the RGB feature map is
reduced.

4. Experiments

All experiments have been performed on RTX 2080Ti
GPUs, available on the Informatics Research cluster, due to
the excessive size of the DeepLabV3 model. The longest
experiments took about 13h to finish with only 30 epochs.

4.1. Loss Function

C .
. i* —Xi l ceti
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As a loss function, we have decided to use a cross-entropy
defined by equation 6, where C stands for the number of
classes. However, after analyzing the dataset we were con-
cerned whether the choice of unweighted cross-entropy
(one in which w; = 1 for each class i) is appropriate for
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the dataset at hand in which classes are greatly unbalanced.
Thus, we have verified whether a weighted version of the
cross-entropy would yield better results. We have trained
two baseline models for 30 epochs, but one was optimizing
weighted cross-entropy while the other was optimizing its
regular unweighted version. The weight for a given class
was computed as an inverse of the fraction of pixels in the
training set assigned to that class. As a result, the base-
line model that optimized weighted cross-entropy attained
80.6% accuracy on the validation set, compared to 85.9%
of its unweighted counterpart.

Interestingly, the difference in outputs of the two models
is visible. Figure 5 demonstrates examples of such differ-
ences. Primarily, the unweighted cross-entropy leads to the
prediction of sharper and more realistic class boundaries.
The model is more conservative at assigning the pixels to
other class than the most common "Ground" label. On the
other hand, the model with weighted loss is penalized the
least for assigning a wrong class to the "Ground" class,
while the reverse is true for missing less frequent classes.
Consequently, the model with unweighted loss prefers to
assign more than necessary number of pixels to the less
frequent classes to avoid costly errors.

This is especially visible in how differently the models
classify the class of cars. Initially, we were concerned that
the model with unweighted loss will completely neglect
the less prevalent "Car" class but it distinguishes cars as
accurately as its counterpart. Interestingly, the model with
weighted loss tends to make some random predictions that
do not make sense like the one on the first image.

After the experiment, we have decided that the unbalanced
version of the loss is better for our task as it leads to higher
accuracy and more reasonable segmentation. We attribute
part of the weighted loss imperfection to the significant
difference among the class distributions in the training and
validation set. In the remainder of the experiments, we use
the unbalanced version of the mloU for the same reasons
why the unbalanced loss function was chosen.

Moreover, the inspection of the predictions has showed us a
number of mistakes in the ground truth labels of the images.
For example, some trees have been labelled as a car or vice
versa. We believe that these errors may prevent any model
from acquiring good performance on this dataset.

4.2. Regularization

When have trained our models initially with weight decay
of 1 = 107, we have realized that although the models
demonstrated healthy learning curves on the training set the
same cannot be said about the performance on the validation
set. This phenomenon is demonstrated in Figure 9. The
high variability in the validation performance exemplifies
the overfitting of our models. Thus, we have undertaken a
parameter search of the weight decay, seen in Table 2. Due
to computational constraints, we have utilized solely the
best among our models in these experiments.

| Model || From scratch | Pre-trained |
ESANet 0.228 0.495
Late Fusion 0.269 0.570
RGB-D 0.302 0.504
Early Fusion 0.313 0.576
Baseline 0.328 0.598
ASPP Fusion 0.332 0.582
Depth-aware CNN'! 0.348 0.526
Depth-aware CNN? 0.348 0.591

Table 3. Experiment results. The values are mean validation IoU.

Consequently, we have determined that for models incorpo-
rating depth a 50 times greater weight decay than the one
suggested in (Chen et al., 2017b) was leading to the best
results. On the other hand, 2 = 1073 was leading to the best
baseline performance. In the remainder of the experiments,
we use A = 5 % 107 in models that incorporate depth and
A = 1073 for the baseline.

Decay || Baseline | ESANet | Depth-aware CNN
11077 0.586 0.576 0.570
1%1073 0.598 0.557 0.562
2% 1073 0.590 0.576 -
5%1073 0.590 0.582 0.591
11072 - 0.556 0.586

Table 2. Results of the weight decay parameter search. The values
are mean validation IoU.

4.3. Final experiment

Finally, we have trained each of the models defined in
Section 3 for 30 epochs with the previously specified pa-
rameter values. Additionally, for each model, we have
assessed its performance both when trained from scratch or
pre-trained on ImageNet. The results of the experiment are
demonstrated in Table 2 where the mloU refers to the best
mean IoU ever recorded for such a model. Depth-aware
CNN' refers to a model in which the Depth-aware convolu-
tions are applied in every Bottleneck block of the encoder.
Meanwhile, depth-aware CNN? mimics the approach from
(Wang & Neumann, 2018) by applying the depth-aware
convolution only in the first Bottleneck of each ResNet
layer.

As we have initially predicted, the simplest RGB-D model
is too naive to lead to any performance improvements over
the baseline. The quite arbitrary way of adjusting the first
layer of the pre-trained model to accommodate the depth
channel in reality only adds noise. Surprisingly, the RGB-D
model is also worse than the baseline when trained from
scratch.

Counterintuitively, when it comes to the fusion-based mod-
els, the most sophisticated one of them, ESANet, consis-
tently underperforms. It is not surprising in the pre-trained
case as the core RGB-D fusion units must be trained from
scratch even when the remainder of the encoder is pre-
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Figure 6. Differences in segmentation between best pre-trained
baseline, depth-aware and ASPP fusion models.

trained, which inevitably hinders the performance. The
underperformance when training entirely from scratch can
probably be attributed to the difference in the classifier that
we have used and the one in the original ESANet.

Surprisingly, our ASPP fusion method outperforms its sib-
ling fusion-based models. Notably, one of the factors that
may contribute to this phenomenon is the fact that the ASPP
fusion model does not utilize the RGB-D Fusion unit. This
would explain why ASPP is significantly better than the
very similar late fusion model.

The depth-aware CNNs were the most successful among
all of the models in incorporating the depth information.
This especially highlights the parameter efficiency of this
approach as it achieves better results than the fusion models
that contain 60% more parameters (Table 4). Albeit, there
was not much difference in the performance among the two
depth-aware CNN versions when trained from scratch, the
two models are visibly distinct when utilized in conjunction
with a pre-trained backbone. In our opinion, the architecture
from (Wang & Neumann, 2018) is better than its sibling
that uses more depth-aware convolutions because it simply
is less invasive in its accommodation of depth signal.

Model number of parameters
Baseline 39,635,016
Depth-aware CNN 39,635,016
RGB-D 39,638,152
Early Fusion 39,639,440
ASPP Fusion 63,464,456
Late Fusion 64,189,704
ESANet 64,538,736

Table 4. The total number of parameters in the model when
ResNet50 is used as the encoder and DeepLabV3’s head as a
classifier.

Unfortunately, we were not able to outperform the pre-
trained baseline model. Solely, when we compare the mod-
els trained from scratch, the Depth-aware CNNs and our
ASPP fusion emerge superior. Notably, the commonality
among the best depth using models is that they augment
the architecture of the baseline in a less invasive manner.
This finding highlights the difference in the nature of the
RGB and the depth information that makes the naive fu-

sion of these signals counterproductive. We were able to
outperform the baseline when using elevation and training
our models from scratch, so multispectral input data can be
useful. Nevertheless, the performance boosts acquired via
data of non-RGB nature is modest and, in our opinion, does
not justify the costs of attaining it. The models adjusted
to non-RGB modality input are especially cumbersome in
taking advantage of the ready pre-trained components. This
further increases the cost of using depth as acquiring a per-
formance level of a pre-trained model requires hundreds of
training epochs and substantial computational resources.

5. Related work

Although we have mentioned related work when describing
our contributions, we think that there are other recent papers
worth mentioning as well. (Gupta et al., 2014) suggests an
HHA transformation, or horizontal disparity, height above
ground, and the angle of the local surface normal with the
inferred gravity direction. (Long et al., 2015) compares
different ways of merging the HHA features with the RGB
features and claims that a late fusion approach, where the
features are combined at the final layer, yields better perfor-
mance than merging the features in earlier layers. GLPNet
(Chen et al., 2021b) shows that, by using two depth fu-
sion modules can give substantial advantage over simple
RGB data in NYU-Depth v2 (Nathan Silberman & Fergus,
2012) dataset. (Chen et al., 2021a) has proposed S-Conv, a
convolution block similar to Depth-aware implemented by
us, that attempts to integrate the 3D information from the
depth during the convolution. Similarly, (Xing et al., 2020)
presents Malleable 2.5D convolution that is supposed to
learn the receptive field along the depth-axis during con-
volution. Lastly, the paper by (Wang et al., 2020) shows
CEN, a similar to ESANet parameter-free multimodal fu-
sion framework that dynamically exchanges channels be-
tween sub-networks of different modalities.

6. Conclusions

We present a novel work on the DroneDeploy dataset by in-
corporating the depth data to a DeepLabV3 baseline model
in three distinctive ways: a naive 4" channel implemen-
tation, with an ESANet’s RGB-D Fusion module and a
Depth-aware convolution. We conclude that, despite our ini-
tial assumptions, introducing the elevation does not result
in obvious improvements and can usually lead to worse
performance due to the superb optimisation of pure RGB
segmentation models and the difficulty in obtaining pre-
trained RGB-D models. The benefits of the additional depth
information could be simply surpassed by a larger, better
quality dataset (Sun et al., 2017). RGB data typically
carries enough information to properly extract necessary
features, hence it limits the usefulness of capturing addi-
tional depth maps. In the future we would like to study the
relative usefulness of depth in relation to obtaining a larger
datasets. Perhaps Elon Musk is right, RGB could be all you
need.
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A. Additional tables and figures

Training set elevation

Validation set elevation

Figure 7. Distribution of elevation in the training and validation
sets of the DroneDeploy dataset. Zoom in to see more details.

Pretrained models with 0.0001 weight decay

Mean Validation loU

Figure 8. The learning curves of initial pre-trained models. Zoom
in to see more details.
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Figure 9. Further differences in segmentation between best pre-trained baseline, depth-aware and ASPP fusion models.



